5 research outputs found

    A parallel H.264/SVC encoder for high definition video conferencing

    Get PDF
    In this paper we present a video encoder specially developed and configured for high definition (HD) video conferencing. This video encoder brings together the following three requirements: H.264/Scalable Video Coding (SVC), parallel encoding on multicore platforms, and parallel-friendly rate control. With the first requirement, a minimum quality of service to every end-user receiver over Internet Protocol networks is guaranteed. With the second one, real-time execution is accomplished and, for this purpose, slice-level parallelism, for the main encoding loop, and block-level parallelism, for the upsampling and interpolation filtering processes, are combined. With the third one, a proper HD video content delivery under certain bit rate and end-to-end delay constraints is ensured. The experimental results prove that the proposed H.264/SVC video encoder is able to operate in real time over a wide range of target bit rates at the expense of reasonable losses in rate-distortion efficiency due to the frame partitioning into slices

    A low-complexity parallel-friendly rate control algorithm for ultra-low delay high definition video coding

    Get PDF
    Ultra-low delay high definition (HD) video coding applications such as video conferencing demand, first, low-complexity video encoders able to support multi-core framework for parallel processing and, second, rate control algorithms (RCAs) for successful video content delivering under delay constraints. In this paper a low-complexity parallel-friendly RCA is proposed for HD video conferencing. Specifically, it has been implemented on an optimized H.264/Scalable Video Coding (SVC) encoder, providing excellent performance in terms of buffer control, while achieving acceptable quality of compressed video under the imposed delay constraints

    HEVC real-time decoding

    Get PDF
    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication

    HEVC performance and complexity for 4K video

    Get PDF
    The recently finalized High-Efficiency Video Coding (HEVC) standard was jointly developed by the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) to improve the compression performance of current video coding standards by 50%. Especially when it comes to transmit high resolution video like 4K over the internet or in broadcast, the 50% bitrate reduction is essential. This paper shows that real-time decoding of 4K video with a frame-level parallel decoding approach using four desktop CPU cores is feasible

    Molecular insights and concepts to engineer singlet fission energy conversion devices

    No full text
    corecore